UNIT IV : COOKIES & BROWSER DATA

Cookies- Basic Of
Cookies

* A cookie is a small text file that lets you store a small amount
of data on the user's computer.

e They are typically used for keeping track of information such as
user preferences that the site can retrieve to personalize the
page when user visits the website next time.

* Cookies are an old client-side storage mechanism that was
originally designed for use by server-side scripting languages.

e Cookies can also be created, accessed, and modified directly using
JavaScript, but the process is little bit complicated and messy.

Cookies- Basic Of
Cookies

* Cookies are a plain text data record of 5 variable-length fields -

1.
2.
3.

Expires — The date the cookie will expire.
Domain - The domain name of your site.

Path - The path to the directory or web page that set the
cooKkie.

Secure - If this field contains the word "secure”, then the cookie
may only be retrieved with a secure server.

Name=Value - Cookies are set and retrieved in the form of
key-value pairs

Cookies- Basic Of
Cookies

* Types of Cookies

1. Session Cookies - These cookies are temporary which are
erased when the user closes the browser. Even if the user logs
in again, a new cookie for that session is created.

2. Persistent cookies — These cookies remain on the hard disk
drive unless user wipes them off or they expire. The Cookie's
expiry is dependent on how long they can last.

 JavaScript can create, read or delete a cookies using
document.cookie property.

Creating
Cookies

» Creation of Cookies is a simple techniques. For creating a cookie
we need to assign value to window.document.cooKkie.

e document.cookie = "cookiename=cookievalue"

e Thus the name value pair separated by = sign & terminated by a
delimiter like semicolon(;) the cookie can be assigned to
document.cookie.

Creation of Cookies
Example:

Reading A Cookie
Value

e To create cookie & then read the value of the cookies created.

e Reading a cookie is just as simple as writing one, because the value
of the document.

» The document.cooKkie string will keep a list of name=value pairs
separated by semicolons, where name is the name of a cookie and
value is its string value.

e Using split() function the string of cookies is break into key and
values.

<html> r ESREEN)

{Fcrip... {_ Onlinela.. /| , Conn.. = | = 4+ =~
< > : -
head . | . o i (-_ files/ /DMy Works/MN x 4 0O © @ =
<script type = "text/javascript">
<l__ All Cookies - username=sandeepKk ey is - username and Value is - sandeep

function ReadCookie()
{
var allcookies = document.cookie;
document.write ("All Cookies: " + allcookies);
cookiearray = allcookies.split(';');
for(var i=0; i<cookiearray.length; i++) {
name = cookiearray[i].split('=")[0];
value = cookiearray[i].split('=")[1];
document.write ("Keyis: " + name + " and Value is : " + value);
}
}
</script> </head>
<body>
<form name = "myform" action ="">
<p> click the following button and see the result:</p>

Deleting
Cookies

e Cookies get deleted automatically when the browser session
ends or its expiration date is reached.

» By setting expiry date we can delete the cookie.

<html> <head>
<script type = "text/javascript">
function WriteCookie()
{
var now = new Date();
now.setMonth(now.getMonth() -1);
cookievalue = escape(document.myform.customer.value) + “;"
document.cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() + ;"

)

document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script> </head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name = "customer” />

<input type = "button” value = "Set Cookie" onclick = "WriteCookie()" />
</body> </html>

Setting The Expiration Date Of
Cookie

e We can extend the life of a cookie beyond the current browser
session by setting an expiration date and saving the expiry
date within the cookie.

» This can be done by setting the ‘expires’ attribute to a date and
time.

<html> <head>
<script type = "text/javascript">
function WriteCookie()
{
var now = new Date();
now.setMonth(now.getMonth() +1);
cookievalue = escape(document.myform.customer.value) + “;"
document.cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() + ;"

)

document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script> </head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name = "customer” />

<input type = "button” value = "Set Cookie" onclick = "WriteCookie()" />
</body> </html>

Browser

e It is possible to open a new browser window from a currently
running JavaScript. One can determine the size, location of this
window, toolbar, scroll bar or any other style that normally the
browser windows have.

* Once the new browser window is set up it is possible to change
the contents within that window dynamically.

Opening A
Window

» [tis possible to open a new window from a JavaScript by
simply clicking a button.

» For that purpose the window object is used. This window
object has various useful properties & methods.

» To open a new windows we use open() method of
window object.

Opening A
Window

* Syntax: window.open(url, name, style);

e url: An URL to load into the new window.

e Name: A name of the new window. Each window has a
window.name, and here we can specify which window to use for

the popup. If there’s already a window with such name - the given
URL opens in it, otherwise a new window is opened.

e style: The style of window includes various parameters such as
menubar, toolbar, location, status, resizable, scrollbars, height &
yvidth of window .

\\\\\\\\

<html>

<head>

<title>JavaScript New Window Example</title>

</head>

<script type="text/javascript”>

function poponload()

{
testwindow = window.open("", "mywindow"”,
"location=1,status=1,scrollbars=1,width=100,height=100");
testwindow.moveTo(0, 0);

} JavaScript New Window Example
</Script> ri JavaScript Mew Window Example - Mozilla Firefox I. = | =) |_-53-]1
<b0dy Onload="iavascript: pOponload() "> @ https://www.tutorialspoint.com/cg/assets/nUPoly.php
<h1>JavaScript New Window Example</h1> JavaScript New Window

Example

Giving The New Window
Focus

e The focus() method sets focus to the current window.

e This method makes a request to bring the current window to the
foreground.

<IDOCTYPE html>
<html>
<body>
<p>Click the button to open a new window with get focus....</p>
<button onclick="myFunction()">Try it</button>
<script>
function myFunction()

{

var myWindow = window.open("", "", "width=200,height=100");

myWindow.document.write("<p>A new window!</p>");

mYWindOW.fOCUS()) Click the button to open a new window with get focus._ ..
_ } [@ Mozilla Firefox el (5] i)
</Scr1pt> @ | https:/www.w3schools.cor
</body>

A new window!

</html>

Window
Position

e We can set the desired position for the window. Using the left &
top attributes values the window position can be set.

<HTML>

<HEAD>

<SCRIPT language="JavaScript">
function new_win()

{
window.open("htip://www.google.com”,"mywin","width=400,height=300
, screenX=50,left=50,screenY=50,top=50");

[Open Mew Window]

} i

< / SCRIPT> l‘ch:gI: t-t rv:iiniahF:refcx | E=EE
</HEAD> s www.google,

<BODY>

<FORM name="myform">

<INPUT TYPE="button" value="Open New Win d
</FORM>

</BODY>

http://www.google.com/
http://www.google.com/

Changing The Content Of
Window

e By writing some text to the newly created window we can change
the contents of a window.

<IDOCTYPE html>
<html>
<body>
<p>Click the button to open a new window with Changing the content....</p>
<button onclick="myFunction()">Try it</button>
<script>
function myFunction()
{
var myWindow = window.open("", "", "width=200,height=100");
myWindow.document.write("<p>Welcome to CSS... By Current

Window...</ p>"); Clicke the button to open a new window with Changing the content. ..
. J [@ Moxzilla Firefox (oo [
</script>
& hitpsSwowotutorialspoint.c
</body>
</html> Welcome to CSS_.. By Current
/ m Window...

Closing A
Window

* he close method closes only windows opened by JavaScript using
the open method.

<IDOCTYPE html> <html> <body>
<button onclick="openWin()">0Open "myWindow"</button>
<button onclick="closeWin()">Close "myWindow"</button>
<script>
var myWindow;
function openWin()
{

myWindow = window.open("", "myWindow",
"width=200,height=100");
myWindow.document.write("<p>This is ' myWindow'</p>");

} [Open "myWindow"] [Close "myWindow™"]
funCtion ClOSEWin() I & Mozilla Firefox I. [[=] i:hl
{ B | https: S wwww3schools.comyjsn

myWindow.close(); This is 'myWindow

Scrolling A Web
Page

e We can scroll horizontally or vertically using ScrollTo()
function.

<html> <head>
<script type="text/javascript">
function scrollWindow()

{
window.scrollTo(100,0)

}

</script> </head>

<body> <form>

<input type="button" onclick="scrollWindow()" value="Scroll">
</form>

1

2

3

Multiple Window At
Once

e Itis possible to open multiple windows at a time. By using open()
method.

<html>

<head>

<script type="text/javascript”>

function open_win()

{
window.open(http://www.javaZs.com/")
window.open(http://www.google.com/")

}

</script>

</head>

<body>

<form>

<input type=button value="0Open Windows" onclick="open_win()">
</form>

http://www.java2s.com/
http://www.java2s.com/
http://www.java2s.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

Creating A Web Page In New
Window

» We can create a web page using the window object with the
help of write method.

* Inside the write() we have to write the content of the web

page with help of the html elements such as
<head>,<body>,<h1>.

<HTML> </SCRIPT> </HEAD>

<HEAD> <BODY>

<SCRIPT language="JavaScript"> <FORM name="myform">

<l-- <INPUT TYPE="button" value="Create Web
function new_win() Page" onClick="new_win()">

{ </FORM> </BODY> </HTML>

var mywin=window.open("","mywin","width=400,height=300")
mywin.document.write("<html>");
mywin.document.write("<head>");
mywin.document.write("<title>WEB SITE DEMO</title>");
mywin.document.write("</head>");
mywin.document.write("<body>");
mywin.document.write("<h2>This is a new Web Page</h2>");
mywin.document.write("<h3>Welcome User...!!!'</h2>");
mywin.document.write("</body>");
in.document.write("</html>");

JavaScript In
URLs

e JavaScript code can be included on the client side.

e JavaScript can be specified in URL using the pseudo-protocol
specifier.

* This special protocol type specifies that the body of the URL is

arbitrary JavaScript code to be interpreted by the JavaScript
interpreter.

e For Example: We can type the following code in URL bar:
javascript:alert("Hello World!")

e If the JavaScript code in a JavaScript: URL contains multiple statements,
the statements must be separated from one another by semicolons.
,RL mlght look like the following:

Wi:var now = new Date(); "The time is:" + now ;

JavaScript In
URLs

e JavaScript has several security issues that need attention.

* One of the most common JavaScript security vulnerabilities is Cross-
Site Scripting (XSS). Cross-Site Scripting vulnerabilities enable
attackers to manipulate websites to return malicious scripts to visitors.
These malicious scripts then execute on the client side in a manner
determined by the attacker. This vulnerability may cause the user data
theft, account tampering and so on.

* Cross-Site Request Forgery(CSRF) is another issue in JavaScript
Cross-Site Request Forgery involves taking over a impersonating a
user’s browser session by hijacking the session cookies. CSRF attacks

an trick the users into executing malicious actions the attacker wants

Ithomsegd actions on the website.

Timer
S

* The window object allows execution of code at specified time
intervals.

* These time intervals are called timing events.
* The two key methods to use with JavaScript are:
1. setTimeout(function, milliseconds)

 Executes a function, after waiting a specified number of
milliseconds.

* The first parameter is a function to be executed.

e The second parameter indicates the number of milliseconds
cution.

a) Aa

<IDOCTYPE html>

<html>

<body>

<p>Click "Try it". Wait 5 seconds....</p>

<button onclick="setTimeout(myFunction, 5000);">Try
it</button>

<script>

function myFunction() Click "Try it". Wait 5 seconds.

{ -T it
alert('Hello Message by setTimeout()'); o)

}

</SCI‘ipt> Hello Message by setTimeout()

</body>

</html>

Ok

Timer
S

2. setinterval(function, milliseconds)

e Same as setTimeout(), but repeats the execution of the function
continuously.

* The first parameter is the function to be executed.

* The second parameter indicates the length of the time-interval
between each execution.

<IDOCTYPE html>
<html>
<body>
<p>A script on this page starts this clock:</p>
<p id="demo"></p>
<script>
var myVar = setInterval(myTimer, 1000);
function myTimer()
{

var d = new Date();
document.getElementByld("demo").innerHTML =
d.toLocaleTimeString();

}

</script> A Script on this page starts this clock:

9:21:50 AM

Browser
Location

e The windowlocation object is useful for finding out the
current location or path of the web page.

* Properties of window.location as follow:
1. window.location.hostname
2. window.location.pathname
3. window.location.protocol
4.

window.location.assign

<IDOCTYPE html>
<html>
<body>
<p id="ID"></p>
<script>
document.getElementByld("ID").innerHTML= "This web page
is at path: "+window.location.pathname;
</script>
</body>
</html>

Output: This web page is at path: /cg/assets/PM7hUK.php

<IDOCTYPE html>
<html>
<body>
<p id="ID"></p>
<script>
document.getElementByld("ID").innerHTML= "This web page
is using the protocol: "+window.location.protocol;
</script>
</body>
</html>

This web page is using the protocol: https:

Browser History

e The windowhistory object is used for displaying browser
history.

e There are two methods window.history as follow:

1. window.history.back() : This method loads the previous URL in
the history list.

2. window.history.forward() : This method loads the next URL in
the history list.

<html>

<head>

<script>

function MoveBack()

{

window.history.back();

}

function MoveForward()

{

window.history.forward();
}
</script>
</head>
<body>

<form name= "form1">
<1nput type = "button” value ="Back" onclick="MoveBack()">

) e = "button” value ="Forward"” onclick="MoveForward()">

