

2

 A cookie is a small text file that lets you store a small amount
of data on the user's computer.

 They are typically used for keeping track of information such as
user preferences that the site can retrieve to personalize the
page when user visits the website next time.

 Cookies are an old client-side storage mechanism that was
originally designed for use by server-side scripting languages.

 Cookies can also be created, accessed, and modified directly using
JavaScript, but the process is little bit complicated and messy.

3

 Cookies are a plain text data record of 5 variable-length fields −

1. Expires − The date the cookie will expire.

2. Domain − The domain name of your site.

3. Path − The path to the directory or web page that set the
cookie.

4. Secure − If this field contains the word "secure", then the cookie
may only be retrieved with a secure server.

5. Name=Value − Cookies are set and retrieved in the form of
key-value pairs

4

 Types of Cookies

1. Session Cookies − These cookies are temporary which are
erased when the user closes the browser. Even if the user logs
in again, a new cookie for that session is created.

2. Persistent cookies − These cookies remain on the hard disk
drive unless user wipes them off or they expire. The Cookie's
expiry is dependent on how long they can last.

 JavaScript can create, read or delete a cookies using
document.cookie property.

5

 Creation of Cookies is a simple techniques. For creating a cookie
we need to assign value to window.document.cookie.

 document.cookie = "cookiename=cookievalue"

 Thus the name value pair separated by = sign & terminated by a
delimiter like semicolon(;) the cookie can be assigned to
document.cookie.

Create Cookie.docx

7

 To create cookie & then read the value of the cookies created.

 Reading a cookie is just as simple as writing one, because the value
of the document.

 The document.cookie string will keep a list of name=value pairs
separated by semicolons, where name is the name of a cookie and
value is its string value.

 Using split() function the string of cookies is break into key and
values.

<html>
<head>

<script type = "text/javascript">
<!--

function ReadCookie()
{

var allcookies = document.cookie;
document.write ("All Cookies : " + allcookies);
cookiearray = allcookies.split(';');
for(var i=0; i<cookiearray.length; i++) {

name = cookiearray[i].split('=')[0];
value = cookiearray[i].split('=')[1];
document.write ("Key is : " + name + " and Value is : " + value);

}
}

</script> </head>
<body>

<form name = "myform" action = "">
<p> click the following button and see the result:</p>
<input type = "button" value = "Get Cookie" onclick = "ReadCookie()"/>

</form> </body> </html>

9

 Cookies get deleted automatically when the browser session
ends or its expiration date is reached.

 By setting expiry date we can delete the cookie.

<html> <head>
<script type = "text/javascript">

function WriteCookie()
{

var now = new Date();
now.setMonth(now.getMonth() -1);
cookievalue = escape(document.myform.customer.value) + ";"
document.cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() + ";"
document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script> </head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name = "customer"/>
<input type = "button" value = "Set Cookie" onclick = "WriteCookie()"/>

</form> </body> </html>

11

 We can extend the life of a cookie beyond the current browser
session by setting an expiration date and saving the expiry
date within the cookie.

 This can be done by setting the ‘expires’ attribute to a date and
time.

<html> <head>
<script type = "text/javascript">

function WriteCookie()
{

var now = new Date();
now.setMonth(now.getMonth() +1);
cookievalue = escape(document.myform.customer.value) + ";"
document.cookie="name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() + ";"
document.write ("Setting Cookies : " + "name=" + cookievalue);

}
</script> </head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name = "customer"/>
<input type = "button" value = "Set Cookie" onclick = "WriteCookie()"/>

</form> </body> </html>

13

 It is possible to open a new browser window from a currently
running JavaScript. One can determine the size, location of this
window, toolbar, scroll bar or any other style that normally the
browser windows have.

 Once the new browser window is set up it is possible to change
the contents within that window dynamically.

14

 It is possible to open a new window from a JavaScript by
simply clicking a button.

 For that purpose the window object is used. This window
object has various useful properties & methods.

 To open a new windows we use open() method of
window object.

15

 Syntax: window.open(url, name, style);

 url: An URL to load into the new window.

 Name: A name of the new window. Each window has a
window.name, and here we can specify which window to use for
the popup. If there’s already a window with such name – the given
URL opens in it, otherwise a new window is opened.

 style: The style of window includes various parameters such as
menubar, toolbar, location, status, resizable, scrollbars, height &
width of window .

<html>
<head>
<title>JavaScript New Window Example</title>

</head>
<script type="text/javascript">
function poponload()
{

testwindow = window.open("", "mywindow",
"location=1,status=1,scrollbars=1,width=100,height=100");
testwindow.moveTo(0, 0);

}
</script>

<body onload="javascript: poponload()">
<h1>JavaScript New Window Example</h1>
</body>
</html>

17

 The focus() method sets focus to the current window.

 This method makes a request to bring the current window to the
foreground.

<!DOCTYPE html>
<html>
<body>
<p>Click the button to open a new window with get focus....</p>
<button onclick="myFunction()">Try it</button>
<script>

function myFunction()
{
var myWindow = window.open("", "", "width=200,height=100");
myWindow.document.write("<p>A new window!</p>");
myWindow.focus();
}

</script>
</body>
</html>

19

 We can set the desired position for the window. Using the left &
top attributes values the window position can be set.

dow" onClick="new_win()">

<HTML>
<HEAD>
<SCRIPT language="JavaScript">
function new_win()
{
window.open("http://www.google.com","mywin","width=400,height=300
, screenX=50,left=50,screenY=50,top=50");
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name="myform">
<INPUT TYPE="button" value="Open New Win
</FORM>
</BODY>
</HTML>

http://www.google.com/
http://www.google.com/

21

 By writing some text to the newly created window we can change
the contents of a window.

<!DOCTYPE html>
<html>
<body>
<p>Click the button to open a new window with Changing the content....</p>
<button onclick="myFunction()">Try it</button>
<script>

function myFunction()
{
var myWindow = window.open("", "", "width=200,height=100");
myWindow.document.write("<p>Welcome to CSS... By Current

Window...</p>");
}

</script>
</body>
</html>

23

 he close method closes only windows opened by JavaScript using
the open method.

<!DOCTYPE html> <html> <body>
<button onclick="openWin()">Open "myWindow"</button>
<button onclick="closeWin()">Close "myWindow"</button>
<script>
var myWindow;
function openWin()
{

myWindow = window.open("", "myWindow",
"width=200,height=100");
myWindow.document.write("<p>This is 'myWindow'</p>");
}
function closeWin()
{
myWindow.close();

}
</script> </body> </html>

25

scroll horizontally or vertically using ScrollTo()  We can
function.

<html> <head>
<script type="text/javascript">
function scrollWindow()
{

window.scrollTo(100,0)
}
</script> </head>
<body> <form>
<input type="button" onclick="scrollWindow()" value="Scroll">
</form>

1

2

3

4
</body> </html>

27

 It is possible to open multiple windows at a time. By using open()
method.

<html>
<head>
<script type="text/javascript">
function open_win()
{

window.open("http://www.java2s.com/")
window.open("http://www.google.com/")

}
</script>
</head>
<body>
<form>
<input type=button value="Open Windows" onclick="open_win()">
</form>
</body>
</html>

http://www.java2s.com/
http://www.java2s.com/
http://www.java2s.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

29

 We can create a web page using the window object with the
help of write method.

 Inside the write() we have to write the content of the web
page with help of the html elements such as
<head>,<body>,<h1>.

<HTML>
<HEAD>
<SCRIPT language="JavaScript">
<!--
function new_win()
{

var mywin=window.open("","mywin","width=400,height=300")
mywin.document.write("<html>");
mywin.document.write("<head>");
mywin.document.write("<title>WEB SITE DEMO</title>");
mywin.document.write("</head>");
mywin.document.write("<body>");
mywin.document.write("<h2>This is a new Web Page</h2>");
mywin.document.write("<h3>Welcome User...!!!!</h2>");
mywin.document.write("</body>");
mywin.document.write("</html>");

}

</SCRIPT> </HEAD>
<BODY>
<FORM name="myform">
<INPUT TYPE="button" value="Create Web
Page" onClick="new_win()">
</FORM> </BODY> </HTML>

 JavaScript code can be included on the client side.

 JavaScript can be specified in URL using the pseudo-protocol
specifier.

 This special protocol type specifies that the body of the URL is
arbitrary JavaScript code to be interpreted by the JavaScript
interpreter.

 For Example: We can type the following code in URL bar:

javascript:alert("Hello World!")

 If the JavaScript code in a JavaScript: URL contains multiple statements,
the statements must be separated from one another by semicolons.
Such a URL might look like the following:

 For Example: javascript:var now = new Date(); "The time is:" + now31;

32

 JavaScript has several security issues that need attention.

 One of the most common JavaScript security vulnerabilities is Cross-
Site Scripting (XSS). Cross-Site Scripting vulnerabilities enable
attackers to manipulate websites to return malicious scripts to visitors.
These malicious scripts then execute on the client side in a manner
determined by the attacker. This vulnerability may cause the user data
theft, account tampering and so on.

 Cross-Site Request Forgery(CSRF) is another issue in JavaScript
Cross-Site Request Forgery involves taking over a impersonating a
user’s browser session by hijacking the session cookies. CSRF attacks
can trick the users into executing malicious actions the attacker wants
unauthorized actions on the website.

33

 The window object allows execution of code at specified time
intervals.

 These time intervals are called timing events.

 The two key methods to use with JavaScript are:

1. setTimeout(function, milliseconds)

 Executes a function, after waiting a specified number of
milliseconds.

 The first parameter is a function to be executed.

 The second parameter indicates the number of milliseconds
before execution.

<!DOCTYPE html>
<html>
<body>
<p>Click "Try it". Wait 5 seconds....</p>
<button onclick="setTimeout(myFunction, 5000);">Try
it</button>
<script>
function myFunction()
{

alert('Hello Message by setTimeout()');
}
</script>
</body>
</html>

35

2. setInterval(function, milliseconds)

 Same as setTimeout(), but repeats the execution of the function
continuously.

 The first parameter is the function to be executed.

 The second parameter indicates the length of the time-interval
between each execution.

<!DOCTYPE html>
<html>
<body>
<p>A script on this page starts this clock:</p>
<p id="demo"></p>
<script>
var myVar = setInterval(myTimer, 1000);
function myTimer()
{
var d = new Date();

document.getElementById("demo").innerHTML =
d.toLocaleTimeString();
}
</script>
</body>
</html>

37

 The window.location object is useful for finding out the
current location or path of the web page.

 Properties of window.location as follow:

1. window.location.hostname

2. window.location.pathname

3. window.location.protocol

4. window.location.assign

<!DOCTYPE html>
<html>
<body>

<p id="ID"></p>
<script>
document.getElementById("ID").innerHTML= "This web page
is at path: "+window.location.pathname;
</script>
</body>
</html>

Output: This web page is at path: /cg/assets/PM7hUK.php

<!DOCTYPE html>
<html>
<body>

<p id="ID"></p>
<script>
document.getElementById("ID").innerHTML= "This web page
is using the protocol: "+window.location.protocol;
</script>
</body>
</html>

Output: This web page is using the protocol: https:

40

 The window.history object is used for displaying browser
history.

 There are two methods window.history as follow:

1. window.history.back() : This method loads the previous URL in
the history list.

2. window.history.forward() : This method loads the next URL in
the history list.

<html>
<head>
<script>
function MoveBack()
{

window.history.back();
}

function MoveForward()
{

window.history.forward();
}

</script>
</head>
<body>

<form name= "form1">
<input type = "button" value ="Back" onclick="MoveBack()">
<input type = "button" value ="Forward" onclick="MoveForward()">

</form> </body> </html>

